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PREFACE

The mission of the Intelligent Training Branch of the
Technical Training Research Division of the Human Resources
Directorate of the Armstrong Laboratory (AL/HRTI) is to design,
develop, and evaluate the application of artificial intelligence
(AI) technologies to computer-assisted training systems. The
current effort was undertaken as part of HRTI's research on
intelligent tutoring systems (ITS) and ITS development tools.
The work was accomplished under workunit 1121-10-49, Artificial
Intelligence in Training. The proposal for this research was
solicited using a Broad Agency Announcement.
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Summary

The objective of the current research program was to develop a prototype knowledge acquisition
tool to assist in the investigation of knowledge acquisition issues for instructional systems. Our
approach entailed identifying the types of knowledge to be acquired, evaluating methods of
acquiring such knowledge, specifying appropriate interaction metaphors for the direct acquisition
of knowledge from multiple human sources, and iteratively developing an Artificial Intelligence in
Training (AT) prototype that operationalized the findings of the first three tasks. The current
research effort produced a number of knowledge acquisition tool requirements for training
troubleshooting activities in complex systems. This domain requires the integration of at least three
different types of knowledge: (1) knowledge about systems structure, function and their normal
and abnormal behavior (how it works), (2) knowledge about interacting with these systems to
perform a task (how to use it), and (3) knowledge about how to teach students to perform a task
(how to teach it). In addition, the following principles were specified for a knowledge acquisition
environment designed to acquire these types of knowledge:

" Knowledge acquisition should take place in a simulated environment in which users
interact directly with a representation of their domain that emulates their real-world
interactions and promotes the solicitation of natural and instinctive responses
through a direct manipulation interface.

* The knowledge acquisition tool should employ an action-based solicitation method
in which all user actions are recorded in sequence and in "pseudo-real-time."

" The knowledge acquisition tool should support knowledge integration by providing
users with multiple, animated views of knowledge that are completely introspective
and manipulatable.

* The knowledge acquisition tool should support knowledge construction from
observations of user actions.

The following areas for additional research were recommended: Acquisition of instructional
heuristics, dynamic construction of justification knowledge, use of higher level problem
representations such as the goal-action hierarchy, and most importantly, the accuracy of the
expertise captured using these methods. By demonstrating new approaches and integrating
established approaches to knowledge acquisition, we hoped to stimulate additional research on
approaches to the direct acquisition of multiple knowledge types from multiple knowledge sources
for intelligent instructional environments.
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Section 1
Introduction

Methods for facilitating intelligent tutoring systems (ITS) development are key concerns in both
the Air Force (Regian, 1989) and industry (Bloom, Bullemer, and Cochran, 1989). Of the many
technical challenges facing the developers of 1TSs, the most challenging and intransigent revolve
around the issue of knowledge acquisition. Traditional knowledge acquisition problems include the
knowledge acquisition bottleneck, the knowledge filtration problem, cognitive biases, and the
difficulty in "unpacking" compiled expertise. Compounding these traditional knowledge
acquisition problems, knowledge acquisition for instructional systems introduces additional
problems, including the need to acquire multiple knowledge types from multiple sources (i.e.,
various types of domain and instructional knowledge), the need for the knowledge input by one
expert to be completely understood by another expert, necessitating the acquisition of "deep"
knowledge that can be both inspected and manipulated (i.e., actions and justifications, the
acquisition of which previously required knowledge engineers to independently employ a variety
of direct and indirect knowledge acquisition methods), and the fact that the acquisition of
instructional knowledge and domain knowledge is interrelated.

Employing the traditional knowledge acquisition scenario of having knowledge engineers acquire
knowledge from domain experts and instructional developers separately for an ITS is untenable for
a variety of reasons. First, there is the long and costly development cycle produced by this
scenario. Second, because knowledge engineers use a variety of widely differing direct and indirect
knowledge acquisition methods, the knowledge acquired can often be infused with inaccuracies,
making it a "best guess," rather than a true representation of expertise. Third, because there are
many domains represented, the knowledge input by an expert of any one domain must be
accessible to and understood by an expert of any other domain.

The objective of the current research program was to develop a prototype knowledge acquisition
tool that can assist in the investigation of knowledge acquisition issues for instructional systems by
demonstrating new approaches or integrating established approaches to knowledge acquisition that
will help illuminate research questions regarding the direct acquisition of multiple knowledge types
from multiple knowledge sources. The approach employed to accomplish this objective comprised
four major tasks. The first task involved identifying the types of knowledge to be acquired for an
ITS. The second task involved evaluating methods of acquiring such knowledge, including the
exploration and evaluation of new alternatives if necessary. The third task involved defining
appropriate metaphors of interaction to facilitate the direct acquisition of knowledge from human
sources without needing the help of knowledge engineering or Al programming specialists. The
fourth and final task involved iteratively developing a prototype that operationalizes the above
findings.

To summarize briefly, the solution being proposed in the current project has several aspects to it.
First, domain experts and instructional developers must interact directly with the knowledge
acquisition tool. This should alleviate some of the traditional knowledge acquisition problems
associated with having a knowledge engineer in the loop, such as the knowledge acquisition
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bottleneck and knowledge filtration problems. Second, the knowledge acquisition method(s)
employed must be specifically designed to promote natural and instinctive responses by both
domain and instructional experts. To demonstrate this aspect, we are proposing the following*

• Provide experts and instructors with an environment that closely emulates their real-
world interactions with their domain.

" Ensure that the knowledge input by any one expert can be inspected and manipulated
by any other. This is an instantiation of the notion of a "glass box architecture"
(Anderson, 1988; Wenger, 1989), in which we enable multiple views and
representations of the acquired knowledge that can be manipulated.

" Employ a knowledge acquisition method that is able to obtain information both
about what experts do and why they are doing it (Gruber, 1991) in a manner that
does not distract them from their primary task.

Third, the tool must be capable of both supporting and integrating multiple types of input from
multiple experts to ensure that the knowledge acquired is as free from individual cognitive biases
as possible.

This report is organized as follows: Section 2 contains a description of critical issues in knowledge
acquisition, including those introduced by expanding knowledge acquisition to the domain of
intelligent tutoring systems. Section 3 describes the knowledge acquisition approach proposed to
address these issues, including discussions of the prototype's knowledge requirements and
concepts underlying the knowledge acquisition capabilities implemented in the prototype. Section 4
contains scenarios depicting how sample knowledge acquisition sessions might be conducted
using the Al in Training (AM prototype. Section 5 contains conclusions reached from the current
effort. Section 6 contains recommendations and a discussion of future research directions and
issues to be addressed in the area of knowledge acquisition for TSs.
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Section 2
Critical Issues in Knowledge Acquisition

The problem of knowledge acquisition is one of the biggest issues affecting the development and
delivery of artificial intelligence (AI) systems such as expert systems and intelligent tutoring
systems. Early Al systems were plagued by long and costly development cycles, driven primarily
by the difficulty of knowledge acquisition. The most successful attempts to address these
problems have involved developing systems in which the knowledge engineers and Al
programmers have been removed from the knowledge engineering loop entirely.

So far, however, such automated knowledge acquisition has been possible only for specific
domains. While the resulting domain-specific shells are very effective in providing solutions to
tasks for which they were designed, they are not easily generalized to new areas. Furthermore, it
has been well established that expertise is made up of several different kinds of knowledge (Berry,
1987; McGraw & Seale, 1988). When expanding a system's scope from expert advisory to
instruction, failure to capture and represent different knowledge types, which could come from
multiple sources (i.e., domain expert, cognitive scientist, teaching expert) could result in a tutor that
is both limited in scope and lacks the flexibility of a human tutor (Woolf and Cunningham, 1987).

Some of the critical issues in knowledge acquisition revolve around the problems of the
knowledge acquisition bottleneck and knowledge filtration, the nature of compiled expertise, and
cognitive bias. Additional issues present themselves when designing a system for instruction as
opposed to a system for performance. These issues are discussed further in the subsections below.

2.1 Knowledge Acquisition Bottleneck

At present, knowledge acquisition for Al systems, in general, is very inefficient. In the early days
of Al systems development, a typical development scenario would have a knowledge engineer
interviewing a subject matter expert to acquire the knowledge to be incorporated into the system.
The knowledge engineer would in turn interact with an Al programmer to convert the acquired
knowledge into an identified AI representation written in a general-purpose Al language, such as
OPS-5, LISP, or Prolog. This process of characterizing the knowledge of experts is the significant
bottleneck in intelligent systems development The obvious drawback to this methodology was that
the high-level data structures and reasoning schemes that represented the domain knowledge had to
be built from scratch for each new application. The technique amplifies the inefficiency of software
development, requiring knowledge engineers to write one kind of program and programmers to
convert it to another.

2.2 Knowledge Filtration

In addition to the bottleneck problem, there is also the filtration problem, which refers to the
multiple transformations performed on knowledge as it passes from expert to knowledge engineer
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to programmer to software. Inaccuracies in the system's encoded knowledge can result from the
filtering or processing of that knowledge by two nonexperts prior to its entry in the system
(Cochran, Bloom, and Bullemer, 1990).

2.3 Compiled Expertise

The solution to these problems is obvious yet difficult to accomplish: eliminate the need for
knowledge engineers and programmers by developing authoring environments easy enough for
domain experts to use unassisted. The essential difficulty of this strategy is that expertise is not so
easily acquired. One of the fundamental difficulties in most knowledge acquisition methods is that
the human thinking process we wish to understand and model is not available to direct
observation. This difficulty is further compounded by the fact that expertise is typically not
reportable, due to the compilation of knowledge that results from extensive practice in a domain of
problem-solving activity (Anderson, Greeno, Kline and Neves, 1981). Because experts "see" the
solutions to complex problems more often than they deduce them, their expertise is said to be
"compiled," that is, the individual elements of expertise are not available. Thus, knowledge
engineers tend to use a variety of different knowledge acquisition techniques and methods
developed to try to gain access to the experts' reasoning processes. Olson an'- Rueter (1987)
reviewed a number of these methods of knowledge acquisition, classifying them into direct and
indirect methods. Table 1 lists a number of different knowledge acquisition methods:

Table 1. Methods of Knowledge Acquisition

Direct Methods Indirect Methods
Interviews Multidimensional Scaling
Questionnaires Hierarchical Clustering
Observation of Task Performance Weighted Networks
Protocol Analysis Ordered Trees
Interruption Analysis Repertory Grid Analysis
Drawing Closed Curves Device Models

All the direct methods for acquiring knowledge listed in Table 1 can elicit a wide range of
knowledge types. However, their drawback is that until now, they have been techniques employed
by knowledge engineers, not techniques implemented in a computer-based knowledge acquisition
tool usable directly by domain experts. On the other hand, even though all the indirect methods
lend themselves to being implemented in knowledge acquisition tools, and in many cases,
individually, they have been, they illuminate only particular types of domain expertise making
them unsuitable for the task of acquiring the multiple types of knowledge required by an ITS. In
addition, each of these methods was developed as a compromise for dealing with the problems
elaborated on previously. The result of applying any one of these methods is the acquisition of
knowledge that can be biased both by the method itself and by the representation employed by that
method.
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For example, the repertory grid analysis approach to acquiring expert knowledge begins by
specifying a taxonomy of domain concepts and their interelationships, such as listing problem
features, solution states, and the relationship between problem features and solution states (Boose,
Bradshaw, Kitto, and Shema, 1989). Procedural rules are then derived that reflect the underlying
functional model of the domain. Although this approach allows experts to interact directly with the
knowledge acquisition tool, entering their knowledge using their own vocabulary, heuristic
knowledge is not captured directly using this approach. Declarative knowledge of the domain
concepts is captured and manipulated to produce if-then rules that are used to simulate or model
task performance. The resulting procedural knowledge is derived independent of any specific task
situation, often failing to capture an expert's heuristic knowledge.

What is needed is a computer-based knowledge acquisition method that combines the best of both
the direct and indirect methods. First, it is important to be able to accomplish on a computer what
knowledge engineers accomplish using direct acquisition methods. It is widely acknowledged that
the best way to discover how experts make a judgment, diagnosis or design decision is to watch
them work on a real problem (Olson and Rueter, 1987). Therefore, what would be desirable would
be to implement a knowledge acquisition method that automatically records all the experts' actions
(i.e., what they did, when they did it, and the order of their actions) while they are engaged in a
real-world-like problem solving activity on the computer. In addition, this computer-based
knowledge acquisition tool needs to be able to accomplish what knowledge engineers accomplish
using indirect methods: the unpacking of expertise in the form of explanations and justifications
for the various actions an expert takes and decisions the expert makes.

According to Gruber (1991), justifications are declarative specifications of what the situation is,
what the possible choices or actions are, and a set of reasons, defined as specifications of relevant
features of the situation or choice, for a specific choice being appropriate. To determine why a
choice is appropriate in a given situation it is necessary to solicit a set of relevant features of both
the situation and the choice from the expert. Solicitation of these features should take place within
the context of a specific example in a running system in which the features can be computed.
Within the domain of diagnosis, whether it be medical or complex-system faults, situations can be
defined as diagnostic steps or hypotheses and choices can be defined as the diagnostic tests the
diagnostician performs to rule out or confirm those hypotheses.

2.4 Cognitive Bias

An additional problem that has always affected expert systems, one that unfortunately becomes
amplified by allowing domain experts to develop expert systems directly, is that the expert system
is only as good as the expert (Cleaves, 1987; Meyers and Booker, 1989). Often, cognitive biases,
such as inaccurate or incomplete domain representations, are accidentally built into a knowledge
base. Cognitive bias can result from either limitations in an expert's knowledge or expertise, or
from the expert having to generate procedures from memory during knowledge acquisition.
Cognitive limitations in recalling or simulating the tasks could also produce gaps or inaccuracies in
the knowledge acquired. While this may not greatly affect the utility of advisory expert systems (if
the system is as good as a carefully selected expert in solving problems in a particular domain, any
cognitive bias in the approach to those solutions is an advantage), the interaction of cognitive
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biases can lead to significant problems when the knowledge is used for more than one purpose,
which is the case for training systems.

One solution to the cognitive bias problem requires system developers to provide more
simultaneous assistance to experts. For example, knowledge engineers are skilled in detecting
some of the symptoms of bias and in questioning experts to ascertain the gaps in their knowledge.
In an automated knowledge acquisition tool, much of this assistance could instead be provided by
having the expert(s) work in an environment that closely emulates their real-world domain
interactions. By engaging experts in interactions with an emulated environment that responds to
their actions as their actual domain would, and by constraining those interactions to environment-
legal activities only, one provides the context necessary to avoid or detect biases as a result of the
experts' cognitive limitations.

Another solution to the cognitive bias problem involves the use of multiple experts for a single
type of domain knowledge. The use of multiple experts in this sense reduces the likelihood that
idiosyncratic and/or inaccurate knowledge will be encoded in the knowledge base. In an automated
knowledge acquisition tool, this could be accomplished by developing an approach for acquiring
expertise distributed across individuals, that is, it would allow experts to input their knowledge
separately, combined with facilities to review, evaluate, and integrate the acquired distributed
expertise.

2.5 Knowledge Requirements

A knowledge base for use in a training system will need to be able to represent all the expertise of
a specific domain as well as the various types of knowledge used in the expression of that
expertise. With the quantity of knowledge that could be acquired for any domain and the likelihood
that the different types of knowledge will come from different sources, a different type of multiple
expert problem is created. As such, additional issues that must be considered in designing a
knowledge acquisition tool for instructional systems are identifying the types of knowledge to be
acquired and the relationships between those types of knowledge.

The objectives of a system designed for instruction are different from the objectives of a system
designed for task performance. Consequently, the knowledge acquisition requirements will be
different as well. For example, Clancey (1984) reported that an attempt to use MYCIN as a basis
for teaching expert diagnostic skill proved difficult because specific types of information were
either absent or implicitly represented in the systems production rules. Clancey reported that using
an expert system to teach requires a shift in orientation (objective) from simply trying to generate
good task solutions to simulating in some degree of detail the reasoning processes itself. Types of
information required depend on the instructional objectives and methods. An ITS requires more
explicit, psychologically valid models of task performance.

A knowledge acquisition tool for instructional systems will need to be able to acquire a number of
different types of interrelated knowledge. To teach problem solving in complex systems, it will be
necessary to acquire knowledge about the system itself, about the types of problems one can
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encounter in that system, about the ways experts solve those problems, and about the ways
instructors teach that knowledge.

To begin with, to emulate the expert's real-world interactions in a domain, the knowledge
acquisition tool will need to possess and use an abundance of knowledge about the structure,
function, and behavior of the various devices, subsystems and systems of the domain, that is,
device knowledge. When the expert takes an action on some object in the knowledge acquisition
tool's domain representation, the represented system's reaction to that action should emulate the
reaction expected in the actual system. Next, the knowledge acquisition tool will need to acquire
knowledge about problems. The basis for teaching problem solving knowledge, or acquiring
problem solving expertise, is direct interaction with domain problems. One approach to
accomplishing this is to enable experts to build libraries of real domain problems, reflecting both
common and uncommon occurrences. This will involve the initialization of input and control
values and parameters as well as the introduction of faults (and their consequences) into the system
being represented. This acquired problem knowledge can then be used to initialize the tool's
representation of the device knowledge to create scenarios around which to conduct the "real-time"
acquisition of problem solving knowledge. This will involve recording the actions the expert takes,
as well as the represented system's behaviors in response to those actions, and constructing
justifications for those actions to give the problem solutions explanatory power. Finally, the
knowledge acquisition tool will need to support the instructor's use of all the previously acquired
knowledge in instructional interactions with "students." This will involve enabling the instructor to
review and comprehend the problems being solved and the expert approaches to solving those
problems so that they can evaluate the student's performance and depth of knowledge. In addition,
the tool needs to support methods for recording the instructor's interventions and construct
justifications for those interventions from the recorded actions.

In the section that follows we will describe the AT system at a conceptual level, including a
discussion of the system's knowledge requirements and descriptions of the various features of the
knowledge acquisition environment developed in response to the issues elaborated on previously.



Section 3
Current Approach: AIT

3.1 AIT Knowledge Requirements

The AIT demonstrates acquisition of knowledge used to support training of troubleshooting
activities in a process control domain. Support for the training and performance of troubleshooting
activities in the process control domain is provided by three basic types of knowledge. These
include:

* Knowledge about systems and their normal and abnormal processes and behavior
(how it works),

* Knowledge about interacting with these systems to perform a job or task (how to
use it),

" Knowledge about how to teach students to perform a job or task (how to teach it)
(adapted from Kieras, 1988).

3.1.1 "How-it-Works" Knowledge

A basic knowledge requirement for a simulation-based ITS is device knowledge. Device
knowledge characterizes the structure, function and behavior of a process control system. System
designers are typical sources of expertise regarding device knowledge, particularly with respect to
normal structure, function and behavior. Field technicians and engineers are typical sources of
expertise for knowledge about a device's abnormal structure, function and behavior. System
designers often have less experience with abnormal behavior.

Table 2 contains a list of conmmon representations of device knowledge. These representations
contain knowledge about the physical layout of major systems, subsystems, components and their
interconnections; the flow of data between system components; and normal behavior of the system
in terms of conditional state transitions or cause-effect relationships.

There are a number of research programs currently investigating methods of acquiring and
building device model representations (e.g., IMTS, ICATT) as well as commercially available
tools for building object-based system simulations. To avoid duplicating these efforts, it was
decided that the current effort would not address this issue, assuming instead that one of the
methods existing or under investigation could be incorporated into the AIT system to support the
acquisition of device knowledge. Instead, it was decided to represent device knowledge to the
extent necessary to support the acquisition of the other knowledge types (see Section 3) and to do
so in an economical and efficient manner. As such, it was decided to represent device knowledge
in AT using a qualitative behavioral model of a process control subsystem at the level of
replaceable components. A qualitative behavioral model enables the system to simulate the
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Table 2. Real-World Represmados of Derice Knowledge

Device Knowledge Repreaentatlons

Component operating characteristic (system specifications)
Process control descriptions (control schematics)
General physical principles (physics)
System operation descriptions (manuals)
Functional block diagrams
Data flow diagrams
Component-level schematic diagram (usually at subsystem level)
PID drawings

behavior of the subsystem. The behavioral model relates qualitative changes in component
properties to qualitative changes in the component's output The specification of the causal relation
between each component's input and output enables the qualitative simulation of the subsystem's
normal behavior. The interface presents a component-level schematic diagram with access to the
input and output of the subsystem and properties of the individual components, such as percent
opening of a valve.

Because the task domain of the AIT is troubleshooting, the behavioral model must be able to
simulate abnormal behavior as well as normal behavior. Knowing about how a device can fail
involves knowing what components can fail and what the impact would be on the behavior of the
system. Thus, the device knowledge of AT represents failure states of each component and their
impact on the component's output.

3.1.2 "How-to-Use-il' Knowledge

"How-to-use-it" knowledge is the knowledge a user has about interacting with a system to
perform a job or task. The scope of the "how-to-use-it" knowledge in the AIT demonstration
prototype was limited to troubleshooting system faults in a simplified, prototypical process control
application. Troubleshooting can be considered a diagnostic problem solving task, requiring the
identification of changes in normal system behavior (deviation from expected operation) and
localization of the causes of abnormal behavior (Rasmussen, 1981). This means that in addition to
an understanding of the application's device knowledge that enables experts to identify instances of
normal and abnormal system behavior, troubleshooters need to possess two types of "how-to-use-
it" knowledge: problem knowledge and problem solving knowledge.

Problem knowledge can be defined as knowledge of the specific types of problems, symptoms
and faults for a system as well as knowledge of the mappings from symptoms to faults and
problems, that is, knowing what components can fail and how they can fail. Sources of this type of
knowledge are typically field technicians (operators, troubleshooters) and in rare cases, system
designers.
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Problem knowledge in AIT includes an initial symptom description, a fault state (property) and a
value for that fault state. Classes of faults have been enumerated in AlT's device knowledge.
Problem specification involves describing the initial symptoms, selecting components and either
initializing input values or choosing a fault from a list of potential faults and assigning a value to
the fault. Circumstantial information and fault probability knowledge can be included using
explanations attached to specific problem setup actions.

Problem solving knowledge can be characterized as knowledge about problem solving strategies
used to generate problem solving goals and knowledge about procedures for manipulating and
testing the system. The diagnostic problem solving task can be described as follows: It begins with
the identification of some initial problem state (initial symptoms) that indicates that the system is
behaving abnormally. Next come the generation of a set of possible faults (hypotheses) that could
have produced the initial symptoms. Finally, there is the performance of information gathering
activities that allow the problem solver to confirm or rule out hypotheses in the hypotheses set.

Diagnostic problem solving expertise is often thought to consist of heuristics (rules of thumb) for
generating possible problem hypotheses and for evaluating the hypothesis given available
information (Clancey, 1985) as well as the strategic knowledge that guides problem solvers in
deciding what action to perform next (Gruber, 1991). Problem solving expertise is acquired with
years of experience in performing a task in a given domain. Heuristics are often represented as
associations between problem symptoms and fault states.

Gruber (1991) has proposed that strategic knowledge can be represented in terms of justifications
for specific problem solving actions. Justifications are specified in terms of the relevant features of
the current problem situation that explain why an action taken is the appropriate action. Relevant
features of a current situation include problem solving goals, current hypotheses, and knowledge
about the outcome of tests that provide evidence for or against current hypotheses.

AlT represents problem solving knowledge in terms of sequences of actions used to localize
problem causes and the generation and elimination of problem hypotheses from a hypothesis
space. Problem solving actions include viewing available component property information and
conducting tests to obtain additional component state information.

In AlT, strategic knowledge is represented in AIT in terms of task objectives and justifications for
performing problem solving actions. Justifications are acquired in two ways. First, AT
dynamically generates justifications for each user action in terms of its impact on the problem
hypothesis space. Each action can add and/or rule out hypotheses from the hypothesis space.
Second, a user may attach an explanatory statement to any problem solving action directly. In
addition, following completion of their problem solving activity, experts are instructed to specify a
goal-action hierarchy that shows the relation between task objectives and the activities performed to
achieve those objectives. The goal-action hierarchy contains goal and subgoal states that are linked
to each of the knowledge acquisition actions.

AIT supports acquisition of problem solving knowledge by observing and recording problem
solving actions and by soliciting and updating a problem hypothesis space. AT records user
actions in accessing component information and prompts users to add and/or remove hypotheses
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following each information acquisition action. For each problem solution, users specify a goal-
action hierarchy. Users enter goal and subgoal descriptions with links to problem solving actions
showing the relation between task objectives and the activities performed to achieve those
objectives.

3.1.3 "How-io-Teach-ift" Knowledge

Murray and Woolf (1991) have defined Instructional knowledge as "the knowledge related to
teaching and learning a given domain," including in their definition only the types of knowledge
that we consider to be instructional plan information: knowledge about the structuring of a domain
(e.g., the selection and sequencing of lessons and topics) and the identification of parameters or
"bugs" to monitor for student evaluation purposes.

There has been considerable research undertaken to develop tools and methods to facilitate the
acquisition of instruction plan information (Bonar, Cunningham. and Schultz, 1986; Macmillan,
Emme, and Berkowitz, 1988; Merrill, 1989; Murray and Woolf, 1991; Russell, Moran, and
Jordan, 1988). Murray and Woolf have developed a prototype knowledge acquisition system
called KAFITS (Knowledge Acquisition Framework for Intelligent Tutoring Systems), which was
designed to acquire and represent knowledge from instructional experts. KAFITS incorporates
instructional design paradigms and facilitates the rapid creation and manipulation of multiple
tutoring strategies. Merrill (1989) has developed an instructional system design expert system for
instructional designers that guides instructional design decisions so that resulting products can
more adequately implement what is known about learning and instructional design. Russell et al.
(1988) have developed the instructional design environment (IDE), a sophisticated, integrated
computer-based environment for instructional design. IDE facilitates the instructional design
process and the creation of instructional materials by providing a hypermedia-based, flexible
representation workbench. In IDE, all the information used for designing and developing a course
can be represented and manipulated. IDE simplifies the course development task and enables the
construction of more consistent instruction by providing tools and structures that automate many
of the routine tasks.

Our research indicates that there is an additional category of instructional knowledge--knowledge
about how instructors dynamically and spontaneously interact with a student--that has either been
ignored or else dismissed as being irrelevant or too difficult to obtain (Murray and Woolf, 1991).
We call this type of instructional knowledge instructional heuristics, and it is the premise of the
current research effort that acquiring this type of instructional knowledge for an ITS is critical,
particularly within the context of teaching problem solving in complex systems, a significant
problem for industry and the military.

Human instructors respond to student performance in a number of different ways, for example,
providing advice or demonstrating how to perform a task. Instructional heuristics specify the
instructional situations for different types of instructional responses. Situations can be defined in
terms of features of student troubleshooting actions such as type of information accessed, type of
diagnostic test performed, or relation of student strategies to expert strategies. The types of
instructional responses can vary from making certain types of advice available to presenting an
expert solution to the problem. Table 3 lists a number of types of intervention derived from the
research of Burton (1988) and Wenger (1989).
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Table 3. Types of Assistance

Type of Prototypical Instructor
Intervention Description Action Examples

Assistance The instructor takes over parts of the Instructor provides Do-for, remind
problem-solving task, freeing the student with "answer"
student to concentrate on the to that part of the
remaining parts. This type of problem solving task.
intervention is usually applied to
nonessential parts of the task that
may be blocking the student from
progressing and grasping the larger
structural properties of the domain.

Introspection The instructor allows the student to Instructor presents Review, critique
review their actions and decisions by student/expert
presenting them in an appropriate goal/action tree to
manner and allowing the student to student.
browse through them. This type of
intervention encourages the student
to reflect on their problem-solving
activities.

Modeling The instructor performs the task; Instructor -plays-back" Demonstrations,
modeling for the student the way an experts solution for examples,
expert does the activity. An important student. counter-
component of modelling is having the examples,
system articulate the decisions x is explanation,
faced with and the strategies it ib justifications
using to make these decisions. This
type of intervention is useful in
making explicit the strategies the
expert uses, thereby giving the
student an example to follow.

Coaching The instructor breaks in and makes Instructor provides a Advice, hints,
suggestions. When suboptimal specific "hint" or piece suggestions,
behavior or performance is of advice to student. choices
recognized, the "coach" breah in to
give advice. This type of intervention
is most useful in situations where one
wants to give the advice designed to
overcome some specific weakness
noted in the student. One could also
try to discern what" the nature of the
weakness is the tutor Is responding
to.

Material Control The instructor specifies some Instructor requests Topic selection/
particular material or problem to some particular sequencing,
present to the student. This type of material or problem be task generationt
intervention is useful for students who presented to the selection,
seem to be having difficulty putting student. examples
basic concepts together to form a
deeper model of the domain.
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AlT supports acquisition of instructional heuristics by recoring an instructor's observations of a
student's problem solving activity as well as the instructor's intervention specifications. While
viewing a student's sequence of troubleshooting actions, an instructor can assess the
appropriateness of each student action in terms of its relationship to the expert's goal hierarchies.
The instructor can also assess the system inquiries and tests initiated by the student as well as the
student's interpretation of those test results as indicated by changes in their hypothesis space. In
addition, the instructor can specify an instructional intervention following any student action.

3.2 AIT Environment

There are four key principles that guide knowledge acquisition in A1T. These principles were
driven by the knowledge acquisition issues described in Section 2 and are based on current
research advances in knowledge acquisition, analyses of existing knowledge acquisition and
instructional systems, and feedback from a number of domain experts and instructors.

Knowledge acquisition must take place in a simulated environment. In this simulated environment,
users interact directly with a representation of their domain that emulates their real-world
interactions and promotes the solicitation of natural and instinctive responses through a direct
manipulation interface; that is, users take actions on the objects representing the components of the
domain, and the domain representation's response to their action is the same as the user would
expect in a real domain. An issue in constructing a simulated environment is the fidelity of the
computer-based environment to the real-world working environment (Duncan, 1981).

The approach taken in the AT prototype is to simulate information available in the real-world but
not necessarily the format in which it is presented. For purposes of tracking problem solving
performance, component property information is presented only upon request of the user. Since
information gathering is a critical aspect of diagnostic problem solving, it is important to be able to
explicitly represent what information is used and when. This will enable instructional experts to
better understand student or exper. problem solving performance better.

The knowledge acquisition tool should employ an action-based solicitation method in which all
user actions in the simulated environment are recorded in sequence and in "pseudo real-time." In
addition to recording user actions, the method should also solicit from the user in '"pseudo real-
time" a problem hypothesis space, that is, the set of possible problem causes that the problem
solver is considering at any given time that is recorded and updated after each user action.

The knowledge acquisition tool should support knowledge integration by providing instructors
with multiple, animated views of the knowledge that is completely introspective and can be
manipulated. The use of a "glass box" architecture (Anderson, 1988; Wenger, 1989) enables users
to introspect the content and structure of knowledge. Multiple views allows different users to view
knowledge in a manner appropriate to their context of use. The tool should be capable of both
supporting and integrating multiple input from multiple experts to ensure that the knowledge
acquired is as free from individual biases as possible and appropriate for its specific context of use.
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One example of accomplishing this is through the construction and use of goal-action problem
solving hierarchies. The troubleshooting expert can construct a goal-subgoal hierarchy in relation to
a sequence of actions just performed to depict his or her troubleshooting strategy. An instructional
expert can view the same goal-action hierarchy to understand a particular expert's problem solving
approach as the troubleshooting performance is aninated. The instructional expert can modify the
goal-action hierarchy for instructional purposes or choose to provide the student with a view of the
expert's strategy. The instructional expert can view the student's problem solving performance in
relation to the expert's performance by accessing a mapping of student actions onto the expert's
goal-action hierarchy.

The knowledge acquisition tool should support knowledge construction by building representations
of knowledge from observations of user actions. An indirect method of acquiring knowledge from
experts is based on observing experts perform their task. By observing what actions are performed
and the consequences of those actions, it is possible for an observer to infer strategic knowledge
(Gruber, 1991).

Our instantiation of Gruber's (1991) model of justification construction is as follows:
Justifications for the actions taken by the expert problem solvers are constructed from differences
in their dynamic problem hypothesis space from one action, or set of actions, to another. After a
user action has been taken, AIT looks at the user's problem hypothesis space to see if it has been
updated as a consequence of that action. If so, AlT then builds a justification for that action as the
change in the hypothesis space. Justifications for the interventions initiated by the instructor during
a session with a particular "pseudo student" are constructed from a "snapshot" of the
configuration of student actions to expert goals and subgoals at the time the intervention was
initiated, and from observations by the instructor, obtained and recorded in real time, of the
student's actions taken and their problem hypothesis space.
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Section 4
AIT Knowledge Acquisition Scenarios

This section contains descriptions of sample knowledge acquisition sessions that might be
conducted using the ArT prototype. The scenarios are narrative-based, with figures of the
windows, boxes, and objects used in the A1T prototype. The purpose of this section is to provide a
generic story-board that users of the AIT prototype can follow to explore the scenarios of the
various features and methods employed in the areas of session startup, problem setup, expert
problem solving, "pseudo student" problem solving, and student instruction.

It is important to keep in mind while reading this section that the purpose of the AT prototype is
to facilitate the evaluation of various new and established knowledge acquisition methods and
interaction metaphors within the context of instructional systems development. AT is neither
exhaustive in scope and coverage, nor are the methods and metaphors implemented the only ones
possible. Rather, the AIT prototype is intended to serve as a tool to help researchers identify
additional issues and questions concerning knowledge acquisition for instructional systems. In
each of the following knowledge acquisition scenarios, attempts have been made to identify,
wherever possible, alternate approaches that could be used, or that should be evaluated as
alternatives, and issues or questions deserving of additional research. The true success of this
prototype will be measured by the help it is able to provide researchers in identifying additional
important issues and concerns.

4.1 System Startup

Working sessions with the AT prototype begin with the specification of a problem to develop or
use. A user can create a new problem or open an existing problem in the "Open Problem" dialog
box as depicted in Figures 1 and 2. When the dialog box is initially opened, a process is selected
by default ("Heat Reactor" in Figure 1, the only process example supported in AIT) and presented
in the "Process" option filed. If the user wishes to change the process, clicking on the "Process"
option field presents a pop-up menu listing other defined processes from which the user can select
(see Figure 2). Once a process has been selected, the user can either choose an existing problem by
selecting the problem name from the "Defined Problems" list box and pressing the "Open"
button, respectively, or else create a new problem by typing the new problem name in the
"Problem" field and pressing the "Create" button.

The first step in creating a new problem is to enter the presenting symptoms in a dialog box as
depicted in Figure 3. Following input of the presenting symptoms, users are presented with the
"Process Simulation" window, as illustrated in Figure 4. The "Process Simulation" window
contains a schematic overview of the process application. Each of the objects in the window is
selectable, and the content of the information available is dependent upon AlT's particular
knowledge acquisition mode.
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Figure 5 shows a pull-down menu containing a list of possible "Problem"-related activities
supported in Arr. These options are clustered into activities corresponding to the presenting
symptoms, the problem setup, expert problem solving, and student problem solving. An alternate
method of representing these problem-related activities might be to make them constantly available
in an icon-based palette.

_File Edit Options mI.N~mnstructor
Edit Symptoms

Recor eu

Diplay StuReor

tI. xc Creete New Expert Solution9 Record Expert Solution
() Pleyback Expert Solution F

Delete Expert Solution I k
11tw~e Edit Eoal/Subgoel Tree

& DCreate Nt1w Student Solution '

Record Student SolutionPlagack Student Solution

Ex
Delete Student Solution

9d Record EtertI Soine
Figure 5.xprobler lut

Cotrllrtdirollergol re

4.2 Problem Setup

As depicted in the "Problem" menu in Figure 5, problem setup consists of two main actvities:record ("Record Setup") and display C'Display Stup") problem setup information. After
selecting "Record Setup" from the "Problem" menu, the user clicks on an object i the simulation
window (Figure 4) to bring up a problem setup dialog box as depicted in Figure 6. Note that the

system mode is indicated in the lower left corner of the message box, located at the bottom of the
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Figure 6. Problem Setup Dialog Box

simulation window. Objects in the sirr u ition window that can be accessed are indicated by the
highlighting of that object as the cursor passes over it. As can be seen in Figure 6, there are two
types of setup actions a user can perform on a system component: initialize a component property
value or induce a fault. The type of setup action is selected by the use of the mutually exclusive
radio buttons for "Property" and "Fault," respectively.

Figures 7 and 8 show the two types of initialization activities supported in AIT's problem setup
mode. Following selection of a specific property in the "Properties" list box, users can press the
"Edit" button, which enables them to edit that property value either by use of a slider for
continuous values (Figure 7) or by use of a pop-up menu for discrete vaue options (Figure 9), or
else they can press "View," which presents them the component property's current value (Figure
8). The "Monitor" button and option are disabled, as indicated by by its grayed out appearance.
This coding convention of graying out the interface object is used consistently throughout AIT to
indicate unavailability ef the interface objects.

Figure 9 illustrates how faults are induced in AIT. Users select the component property they wish
to fault from the "Faults" list box and press the "Edit" button. The user then specifies a value
using one of the two kinds of "Edit Value" interaction objects discussed previously: pop-up
menus used to present discrete choices (Figure 9) or a value slider used to input system-
constrained continuous values (Figure 7).
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Figure 7. Problem Setup: Edit Component Property

The other type of problem setup activity supported in AlT is displaying the problem setup
information for the expert to review (Figure 10). When the user selects "Display Setup" from the
"Problem" menu, the "Simulation" window is presented, with all selectable objects disabled,
overlaid with component property values and fault induction values currently entered.

4.3 Problem Solving

AlT supports five major activities within the context of expert problem solving (see options in
pull-down menu on Figure 5). These activities include creating, recording, playing-back and
deleting expert problem solutions. In addition, an expert can consmict and edit a goal-action
hierarchy for a recorded solution. AlT also supports four major activities within the context of
student problem solving. Since these problem solving activities are identical to the activities
involving experts, with the exception that the student does not construct a goal-action hierarchy, the
discussions of the creating, recording, playing-back and deleting problem solutions that follow will
apply to both students and experts.

In creating a new problem solution, the user simply enters a new problem solution name in the text
edit field of the dialog box. This action creates a problem solution space that needs to be defined
using the "Record Expert Solution" menu option.
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Figure 8. Problem Setup: View Component Property

When a user begins a problem solving activity, they are first presented with the window
combination depicted in Figure 11. This includes the simulation window, now in "Record

Solution" mode as indicated by the mode message in the lower left corner of the message box, as
well as an "Action Monitor" window. The message box also contains brief instructions on what
the user should do next.

The "Action Monitor" window provides a record keeping environment for the user to review
during problem solving. This includes a scrollable text box containing the problem symptoms, an
"Action" panel that presents and supports basic editing capabilities on user actions, and a
"Hypothesis" panel that presents and supports basic editing of problem hypotheses. Action editing
includes the ability to view or edit an individual action, attach an explanation to an action, move an
action up or down within the list of actions, or delete an action. Each of these functions will be
discussed further later in this section. Hypothesis editing includes specification of the contents of
the hypothesis display in terms of hypotheses currently under suspicion, hypotheses currently
ruled out, or all hypothesis, as well as the ability to select and rule out specific hypotheses.
Hypothesis editing is modal. This means that users have to exit "hypothesis" mode explicitly
using the "Done" button before proceeding with other problem solving activities.
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Figure 9. Problem Setup: Edit Component Fault

The f'irst problem solving activity the user engages in is the creation of their initial problem
hypothesis space. This is accomplished by clicking on an object to bring up the dialog box depicted
in Figure 12. The user selects a fault hypothesis from the list box, then selects either the "Suspect"
or "Rule Out" buttons, then "Exit." AIT currently uses discrete fists of problem hypotheses.
However, any type of input could be used, constrained only by what the application's device
knowledge will support.

Figure 13 shows a typical "Action Monitor" window after the expert has created the initial
problem hypothesis space. After pressing "Done" and exiting "hypothesis" mode, users are
instructed to click on an object in the simulation window. In "Record Solution" mode, clicking on
an object in the simulation window will present them with a problem solution dialog box as
depicted in Figure 14.

Figure 14 also shows the types of problem solving activities supported in AiT. Users can either
view, edit or monitor a component property, or else they can view the results of a test on some
component property. These activities are reflected in Figures 15, 16, 17 and 18, respectively.
Viewing a property value is a request for the current value of that compxont's property. Editing a
component property value is accomplished using the same methods as discussed previously: pop-
up menus for discrete values and sliders for continuous values. Selecting the "Monitor" button
sends a request to the system to display in continuous and dynamic fashion the property value
selected in the simulation window.
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Selecting the "Test" 'option brings up a display of possible tests for that component. Thbe user then

selects the test to be performed and presses the "View" button and AIT displays the results of that
test. It is also possible to define new tests in A1T dynamically. One of the choices available in the
"Options" menu in the title bar is "Define New Test." Selecting this option brings up the dialog
box depicted in Figure 19. To define a new test the user first selects a component type from the
"Types" list box. Depending upon the component type selected, the "legally" measurable
properties of that component type are presented in the "Properties" list box, and any existing tests
are presented in the "Existing Tests" list box. The user can then select a property to be tested, give
the new test a name, and press the "Create" button.

This method of defining a new test is relatively unconstrained. In all likelihood, this functionality
would need to be restricted by such things as available tools, practicality, time to test, etc. It was
included as a demonstration of how this functionality might be implemented: the hierarchical
chaining of features and properties to produce new entities.
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The "Action Montoxce window also continually displays the actions users tk in the simulation

window as well as their updates to the problem hypothesis space. Figure 20 presents an example
of an "Action Monitor" window following four user actions that have resulted in the ruling-out of
three of the four problem hypotheses. The user can review each of these actions and either continue
with the problem solving process by selecting another component or else edit an action in the list
by selecting it with a single mouse ciclL Once selected, the user can move the action up and down
in the list (by use of the up and down arrow buttons), delete the action, edit or view the action, or
else attach an explanation to the action. If the type of action selected is an edit action, the user sees
the "Edit" button, as depicted in Figure 20, which allows them to change the action's property
value if they so desire. If the type of action selected is a view, monitor, or test activity, the "Edit"
button is replaced with a "View" button, signifying that the user cannot change the value
represented in the action.
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Figure 21 shows an example of the 'Edit Action" dialog box opened when a user selects an
editable action and presses the "Edit" button. As can be seen, values are edited using the same
interaction objects discussed previously: pop-up menus for discrete choices and sliders for
continuous values.

Figure 22 shows the dialog box presented when the user chooses to view an action. In this case,
the value cannot be edited; only the results of the action are presented.

Figure 23 shows the dialog box presented in response to a request to attach an explanation to a
specific action. The explanation is entered in free-form text in a scrolling text entry field.
Explanations are saved along with their associated action for later use in building justifications for
user actions.

Another problem-related activity supported in AIT is the playing back of problem solutions.
Figure 24 contains the primary windows used for review of specific problem solutions: the
simulation window, a playback control window, and an "Action Monitor" window customized for
review purposes.
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Playback can be executed under user control by using the "Next" button to move to each
successive action, or else it can be executed under system controL Under system control, the user
can set the playback speed and can still exercise some control over the playback by use of "Start,"
"Pause," and "Resume" buttons superimposed on top of each other in the bottom left of the
"Playback Control" window. At the beginning of a playback session, the "Playback Control"
window opens with the "Start" button visible and the "Pause" and "Resume" buttons disabled
and invisible. Once playback has begun the "Start" button is replaced by the "Pause" button,
which allows users to halt the playback temporarily. Pressing "Pause" causes the "Pause" button
to be replaced by the "Resume" button, which resumes the playback from the point at which it
was stopped. The "Reset" button returns the playback to the first action.
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During the playback process, the first action in the action list is highlighted, as is the object
representation of the component referred to in the action in the "Simulation" window. In addition,
A1T presents the hypothesis set configuration following that action. The "Explanation" field
contains the justification for that action. As described rieviously, the explanation field can contain
two components: (1) any comments entered by the expert during action editing, and (2) differences
in the problem hypothesis space from the previous action (or set of actions) to the present action.
In Figure 24 the action taken was a test of the float device in the surge tank (note that the surge tank
object in the simulation window is highlighted; unfortunately the highlighting of the action in the
action field did not reproduce in Figure 24). The result of that test indicated the float device was not
stuck, so the expert ruled out the hypothesis that the problem was due to a stuck float.

4.4 Goal Tree Construction and Editing

The final AIT problem solving activity that experts engage in is the construction and editing of
their problem solving goal hierarchy. This process is illustrated in Figures 25 through 28. Goal tree
construction and editing starts with the expert's actions being represented as an action list in the
"Goal Editor" window (the lower window in Figure 25) and as graphical objects (with terse text
descriptions) in the lower panel of the "Goal Tree" window (the top window in Figure 25). The
user must then create the subgoals and goals for that problem solution by pressing the appropriate
"Add Goal" or "Add Subgoal" button. Pressing those buttons opens a dialog box into which
experts can enter goal or subgoal titles (see Figure 25). Goals and subgoals can also be deleted by
selecting them from the list and pressing the "Delete Goal" or "Delete Subgoal" button. Lists of
actions, subgoals and goals can be selected by holding down the shift key while selecting. Disjoint
selections are made by holding down the command key during selection.

Goals and subgoals are converted into graphical objects dynamically drawn in the upper panel of
the "Goal Tree" window as they are created. Figure 26 shows a situation where one goal and three
subgoals have been created. Once created, the expert then links actions to subgoals and subgoals to
goals by selecting the entries from two adjacent lists (ie., goal and subgoal or subgoal and action)
and pressing the corresponding "Set" button. Figures 27 and 28 contain goal trees for which the
goal-subgoal, and subgoal-action links have been created, respectively. It is important to note that
any action "a be linked to any number of subgoals, and any subgoal can be !inked to any number
of goals.

The "Show" buttons are used to highlight links in the "Goal Tree Editor" window as follows:
Experts select any goal or subgoal in the editor lists. Pressing the corresponding "Show" button
will highlight the links between the selected item and the information in the list on the right side of
the "Show" button.

The current implementation of goal tree construction was included for exploratory purposes. As
such, the capability does have some functional limitations. The goal tree has no functionality to
compress actions or scroll the window. Due to this limitation, only ten actions can be displayed in
the bottom panel of the "Goal Tree" window regardless of how many actions there are in the
problem solving record. In addition, the goal editor can only handle one expert solution at a time.
Additional functionality will be required to address these two limitations and enable this capability
to be evaluated as a vehicle for combining distributed sources of expertise by way of their goal
trees.
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4.5 Student Instruction

Figure 29 illustrates the possible "Instructor" actions supported in ArT. These activities are
organized around those activities that support the instructor's understanding of the specific
problem symptoms, setup and solution, and those related to the instruction of students in specific
problem solving activities. Reviewing problem symptoms, problem setup, and playing back expert
problem solutions access the same AlT functionality described in the scenarios on problem setup
and solution. The additional functionality provided in this menu involves support for the instructor
in tutorial interactions with "pseudo students" created in ArT. Pointing to the "Instruct Student"
option in the menu causes a list of "pseudo students" to appear to the right of the arrow in an
additional selectable list, if students have been created. One merely moves the cursor over one of
the students and releases the mouse button to select one for an instructional session.
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It is important to note several features of this functionality that are exploratory in nature. First, we
used previous work in the area of Operator Function Modeling (Jones, Rubin, and Mitchell, in
press; Mitchell and Miller 1986) to guide the representation of the goal tree. However, we were
unable to find any previous work or empirical evidence to guide our metaphor for displaying
single or multiple goal trees. As such, we decided to enable two different approaches of goal tree
presentation, that is, all trees or a single, selected tree displayed, for the purpose of soliciting
comments regarding the efficacy of the two approaches. Second, we found support from the
literature on expertise (Clancey, 1985) and perceptual learning and pattern recognition (Duda and
Hart, 1973) for the notion that expert teachers can identify situations requiring intervention based
on their ability to "visually" recognize instances of poor performance. As such, the
implementation is an attempt to explore (1) what information from student and expert problem
solving activities to display to the instructor and how to display that information to facilitate the
instructor's recognition of a situation requiring intervention and (2) how to provide instructors with
a facility for recording those observations in as easy a manner as possible. We have also displayed
a group of instructional intervention buttons derived from Table 3 on page 15. Figure 32 shows an
instructor creating some advice to present to the student.
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Figure 32. Instructor Intervention: Edit Advice
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Given that this is an initial exploration of these issues, we believe extensive research will be
required to evaluate not only the efficacy of these approaches but also to help identify the particular
types of observations that real expert instructors use. In the current implementation, the instructor
can state their observations and recommend a type of intervention after each student action. The
rationale behind this procedure was to identify a method of collecting a large amount of data on the
when, why and what of dynamic instructional interventions. "When" information is captured in
the specific student actions to expert goals configuration. "Why" information is captured in the
instructor's observations about the student's problem hypothesis space and their last problem
solving action taken. "What" information is contained in the typc of instruction recommended.
Theoretically, this data could then be abstracted into general instructional heuristics for a particular
problem domain.

The final "Instructor" activity supported in ArT is "Review Student Session." In this activity, the
instructor is given the opportunity to review an instructional session by providing them with a
dynamic expert-goal-student-action window, and an "Intervention Summary" window as depicted
in Figure 33. Unfortunately, there was not sufficient time to implement the capability to edit a
student session.

4.6 Session Shutdown

The final scenario involves saving the current session, if desired, and shutting down the A1T
application. AlT has the ability to save all problem setup, expert solutions and goal trees, student
solutions, and student-instructor interactions attached to the specific problem created or worked on
to a separate file. At present there is no limit to the number of problems that can be created, hence
there is no limit to the number of problem setups, solutions and interactions as well. To save the
information created or edited during that session, pull down the "File" menu and select the "Save"
option as depicted in Figure 34. To exit AlT once the information has been saved, pull down the
"File" menu and select the "Quit" option. If you quit before saving, all information input during
that session will be lost.
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Section 5
Conclusions

The current research effort has identified a number of conclusions regarding the requirements of a
knowledge acquisition tool for instructional systems.

First, the training and performance of troubleshooting activities in complex systems appears to
require the integration of at least three different types of knowledge that will likely come from
different sources: (1) knowledge about systems and their normal and abnormal behavior ("how it
works"), (2) knowledge about interacting with these systems to perform a job or task ("how to
use it"), and (3) knowledge about how to teach students to perform a job or task ("how to teach
it").

Second, it appears likely that the acquisition of these types of knowledge for use in instructional
systems can be facilitated by developing a knowledge acquisition tool that has some or all of the
following characteristics:

Knowledge acquisition should take place in a simulated environment in which users
interact directly with a representation of their domain that emulates their real world
interactions and promotes the solicitation of natural and instinctive responses
through a direct manipulation interface.

* The knowledge acquisition tool should employ an action-based solicitation method
in which all user actions in the simulated environment as well as their dynamic
problem hypothesis space are recorded in sequence and in "pseudo real time."

* The knowledge acquisition tool should support knowledge integration by providing
users with a glass box architecture with multiple, animated views of the knowledge
that are completely introspective and can be manipulated.

* The knowledge acquisition tool should support knowledge construction by building
representations of strategic knowledge, such as justifications, from observations of
user actions.

Two examples of justification construction employed in the present system include 1) constructing
justifications for the actions taken by expert problem solvers from differences in their dynamic
problem hypothesis space from one action (or set of actions) to another, and 2) constructing
justifications for the interventions initiated by instructors from a "snapshot" of the configuration of
student actions to expert goals and subgoals at the time the intervention was initiated, and from
observations by the instructor, obtained and recorded in real time, of the student's actions taken
and their problem hypothesis space.
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Section 6
Recommendations

The results of the present research effort indicate that there are a number of issues that either
deserve or will require additional research. First, the entire area of the acquisition of instructional
heuristics is relatively new and unexplored. The present research effort represents an attempt to
"scratch the surface" of this problem by helping to identify and raise additional research questions
to be addressed. These additional questions include: How do expert instructors recognize that a
student is in need of some type of intervention and what clues do they use to determine the type of
intervention to initiate? What is the scope of the type of inter-'entions used by expert instructors?
How do you display information from student and expert problem solving activities to facilitate
recognition by the instructor that an intervention is required? What information makes up
instructional heuristics and how do you go about acquiring that information in a natural and
unobtrusive way? And most importantly, is it possible, practical, and useful to aggregate
instructional expertise from specific instructional situations to general instructional heuristics?

Another issue has to do with justification construction. In the current prototype we have
implemented an approach to constructing justifications based on the theory proposed by Gruber
(1991). However, the question must be raised as to just how effective this approach is in capturing
the true essence of expertise. Is there additional information that needs to be included in the
justification and are there unobtrusive ways of acquiring this information through natural
interactions with a domain representation?

Still another issue has to do with the use and implementation of goal trees to represent higher level
problem solving expertise. Are goal trees an effective representation for the teaching of problem
solving expertise? What is the best way to construct and present goal trees? Can the goal tree
metaphor be used to facilitate the integration of distributed sources of expertise?

In addition to the global research questions, it is recommended that further work be done on the
AlT prototype in a number of areas. First, the AlT functionality should be slightly expanded to
allow for its use in empirical investigations of some of the approaches and interface methods
implemented. This will involve implementing the ability to enable different approaches for
accomplishing the same objective selectively (e.g., display either all goal trees or a single goal tree,
or use pull-down menus or icon palettes) as well as expanding some of the current capabilities
from demonstration to full functionality (e.g., the ability to employ more than one process or the
ability to concatenate actions in the goal tree display). In addition, additional functionality should be
incorporated in AIT, such as the ability to acquire instructional plan informatien or device
knowledge as well as the implementation of any new approaches developed in the interim.
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Appendix
Instructions for Software Maintenance

A.1 Software Organization

All files related to this project are kept in a folder named "AlT Folder." The contents of this folder
are shown in Figure A- 1. The A1T-INIT file contains some basic functions for loading and saving,
and definitions of the appropriate paths for all files. The DEFSYSTEM folder contains the code
for defining and maintaining systems. All the source files of this project are included in a system
called the AlT system. The details of using the system feature are described below. The SOURCE
folder contains the source files and the BIN folder contains the compiled versions of the project
files.

91 N fIT Folder
5 items 36 M in disk 2 MB avai

Source Bin ait-initfasl

defsystem alt-int.isp

Figure A-I. The Contents of the AIT Folder

A.2 Maintaining the Source Code

The source files are maintained using a public domain DEFSYSTEM software modified to
enhance its ease of use by Honeywell SSDC. The list of files that constitutes the system and the
order in which they should be loaded are described in the file SYSDEFS. The SYSDEFS file is in
turn maintained by the developer through the Edit System dialog box and the Systems menu. The
Edit Systems dialog box (shown in Figure A-2) shows a listing of all files that make up the
system. By clicking on a "Radio" button, the developer can switch between displaying the files in
alphabetical order or in the order in which they are to be loaded.
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Figure A.2. The Edit System Dialog Box

Other options available in the dialog box allow the developer to load, edit, compile and hardcopy
one or more files. These operations are performed by first selecting the files, setting the appropriate
"Radio" button and finally clicking the "Do It" button. Clicking on the "Load Sys" button at any
time loads all the files that have changed since the system was last loaded. Clicking on the
"Compile Sys" button compiles all source files that have changed since the last compile.
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Figure A-3. The Systems Menu

The menu items under the "Systems" menu allow the developer to bring up the "Edit System"
dialog box. New files can be added by choosing the "Add Files" option. A file dialog box comes
up allowing the new file to be selected. The new file is inserted just above the first selected item in
the "Edit System" dialog box. If no file is selected in the "Edit System" dialog box, then the new
file is added at the end of the list. New files cannot be added to the system when the "Edit
System" dialog box is displaying a sorted list of files. Files may be deleted from the system by
selecting them and choosing "Delete File" from the "Systems" menu.

Adding and deleting files from the system does not by itself change the SYSDEFS file. After
making several additions/deletions, the SYSDEFS file can be updated using the "Save System
Def" item from the "Systems" menu. Also, if the systems file has been updated manually, then
that information can be loaded using the "Load System Def' option under the "Systems" menu.

A.3 Loading of Code into LISP Image

The AT software was developed under Macintosh Common LISP Version 2.Obl with patches 1-
3. All indications are that MCL V2.0 will be released in its final form in early 1992. We do not
anticipate any compatibility problems with the released version.

When LISP is launched, it automatically loads the IN1T file from its home folder. A sample INIT
file is included in our software package. Inside the INIT file are commands to load another file
AIT-INIT (described earlier). This in turn loads all the files necessary for A1T to run.

When loading is complete, the welcome prompt is displayed in the LISP listener. At this time the
current package will be the AT package. A function called STARTUP has been defined in the file
STARTUP.LISP. STARTUP creates all the necessary windows, sets up the menubar and kicks
off the simulation. STARTUP also looks for and loads a file HEAT-REACTOR from the home
directory. This file contains all the problems, solutions and goal trees. Another file that STARTUP
looks for is RECIRC.PICT. This is a PICT format file containing the picture of the heat reactor.
This file can be modified using any drawing application such as MacDraw. If any changes are
made to RECIRC.PICT, care must be taken to save it back as a PICT file.
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A.4 Making an AIT Image

An image file is an application that contains all the functionality of the LISP environment as well
as any other code that was loaded before making the image. Its advantage is that it reduces the time
it takes to load user defined code. An image containing the AIT code can be easily made by
invoking the function MAKE-A1T-IMAGE. You will be prompted for an image name.
Subsequent changes to AIT can now be made by invoking this image.

The image is setup to load the INIT file automatically on being launched. This has the effect of
loading all changes made to the source code since the last image file was created. The STARTUP
function is also called automatically to create all the windows and set up the menubar.

A.5 Making the AIT Application

A LISP application is defined as one that contains all the LISP functions except for the compiler,
inspector and other such developer features. An application is the form in which software is
delivered. Users of applications do not require LISP or a license to use it. The AIT application can
be made by calling the function MAKE-AlT-APP after loading all the AIT code. This function can
also be called in a previously made image.

When the application s launched, the STARTUP function is called to setup all the windows and the
menubar automatically. The AlT application should be distributed along with the file
RECIRC.PICT. If example problems are to be included, the file HEAT-REACTOR must also be
included.
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